Completions and Simplicial Complexes
نویسنده
چکیده
We first introduce the notion of a completion. Completions are inductive properties which may be expressed in a declarative way and which may be combined. We show that completions may be used for describing structures or transformations which appear in combinatorial topology. We present two completions, 〈CUP〉 and 〈CAP〉, in order to define, in an axiomatic way, a remarkable collection of acyclic complexes. We give few basic properties of this collection. Then, we present a theorem which shows the equivalence between this collection and the collection made of all simply contractible simplicial complexes.
منابع مشابه
Vertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملTopology Proceedings 11 (1986) pp. 177-208: COMPLETIONS OF METRIC SIMPLICIAL COMPLEXES BY USING l_p-NORMS
متن کامل
Cohen-Macaulay-ness in codimension for simplicial complexes and expansion functor
In this paper we show that expansion of a Buchsbaum simplicial complex is $CM_t$, for an optimal integer $tgeq 1$. Also, by imposing extra assumptions on a $CM_t$ simplicial complex, we provethat it can be obtained from a Buchsbaum complex.
متن کاملNew methods for constructing shellable simplicial complexes
A clutter $mathcal{C}$ with vertex set $[n]$ is an antichain of subsets of $[n]$, called circuits, covering all vertices. The clutter is $d$-uniform if all of its circuits have the same cardinality $d$. If $mathbb{K}$ is a field, then there is a one-to-one correspondence between clutters on $V$ and square-free monomial ideals in $mathbb{K}[x_1,ldots,x_n]$ as follows: To each clutter $mathcal{C}...
متن کامل